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Many algorithms for studying redistricting rely The degree of a node is the number of edges incident to it, which is
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followed by the second largest, and so on, until the smallest degree. s |

g .d#“ surprised to see block graphs had smaller average degree.
= & ® Square grids have max degree 4 and average degree just less than 4;
o ;;" triangular grids have max degree 6 and average degree just less than 6

20{ o ¢ In terms of degrees, our graphs are closer to triangular grids, but
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v ,”" have significantly larger max degrees
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Looking at the entire data set: there are trends apparent in all 4 data 309
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sets, 1ncluding a correlation between average and max degree. 2.5 -
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e A way to represent geographic structure

¢ In Iowa: Make a vertex for each county, connect neighboring
counties

@ Can build redistricting plans out of this graph
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The shape of the grid has a

Key Takeaways

Our data falls between a square
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®¢ We understand the typical statistics of dual graphs
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® County data has different features than the other levels of

geography
@ Block data has some different features than the other

Zooming in on county data: there are noticeable trends within the
specific level too. For example, in county data, there is a correlation

levels of geography

conneCtiVitY and Planarity ® Dual graphs fall somewhere between square grids and

triangular grids in terms of number of spanning trees

between average degree, max degree, and a distribution of degree values.

Average Degree vs. Number of Nodes by State Distribution of Degree Values

For more detailed redistricting plans, use finer levels of geography
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¢ The term “nearly triangulated’” may be apt; the term “‘nearly

planar’’ is clearly not: a significant majority of dual

they might not be.

_ 201 A graph is connected if for every pair of nodes there exists a path between
1
Counties Census Tracts Census Block Groups Census Blocks 4 / them. A graph is planar if it can be drawn in the plane such that no edges graphs are planar!
) 15 / cross. While one might expect dual graphs to be both connected and planar
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For example, a graph might not be connected because a state has islands; a NeXt Steps

graph might not be planar because five geographic regions meet at a single

point, resulting in a complete graph Ks as a subgraph of the dual graph.

Splitability of spanning trees: A new polynomial-time algorithm for sampling
, _ districting plans on grids relies on the key fact that a polynomial fraction of
H TSR e w TSR e spanning trees on grids can be split exactly in half. For our real-world graphs,
how likely is it that a random spanning tree can be split exactly in half?
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Dual Graphs Considered:

i Clustering coefficients:

® Local: The local clustering coefficient measures the probability that
neighbors of a given node are also connected to each other, forming a
triangle. For a node i, the local clustering coefficient C; is defined as:

¢ From Redistricting Data Hub, prepared by Daryl DeFord (Washington State),
which uses Census data
® Our data covers four levels of census geographies: counties, census
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tracts, census block groups, and census blocks. For each, we have data

available from all states for which there were not data formatting Degree DiStributions O — 2e;
issues: Y k(R — 1)
© Countles: All states except Nevada : b Ei : T DiEkR R oo T citinty Tact oo Bloci Grai ooty Tact where e; is the number of edges between the neighbors of node i, and ki is
O Census tracts: All states except Nebraska, Nevada, and Wisconsin What is the distribution of Histogram with Fitted Binomial Bistribution D e i the degree of node i (the number of neighbors). High local clusterin
© Census block groups: All states degrees in a dual graph? =1 ——-:E2z32n coeffigient for a cit i ndi X e _9 i Lt .
_ e RR———— y would indicate that i1ts neighboring cities are
excepF Nebr?ska, Nevada, Virginia, 2 — . Comparison of Connection Status Across Datasets o Comparison of Planarity Across Datasets also well connected among themselves, forming a tightly knit regional
and Wisconsin For county data, degrees = — e network. This could be important for logistics planning, for example.
© Census blocks: All states except . appear to be normally % o “ @ Global: This could be indicative of strong regional cohesion or the presence
Nevada o distributed! §0l5- ) ) of natural barriers that limit inter-regional connections.
Data validation: Um_ Notably, this pattern doesn’t § 0109 Sm- 8m< Centrality measures are used to identify the most important vertices within a
® Check total number of vertices is hold for other geographies graph with respect to different utilities.
® correct 101 due to the presence of large 0.95 o 7] These measures provide a way to quantify the significance of individual nodes
® Check total population (added across degree nodes. O - — — o | s o — — based on their position in the network. We want to continue by exploring the four
all vertices) is correct i County Block Tract Block Group - - most common types of centrality: degree centrality, betweenness centrality,

Dataset Type

closeness centrality, and eigenvector centrality.

There is a variation of connectivity and planarity across the four datasets




