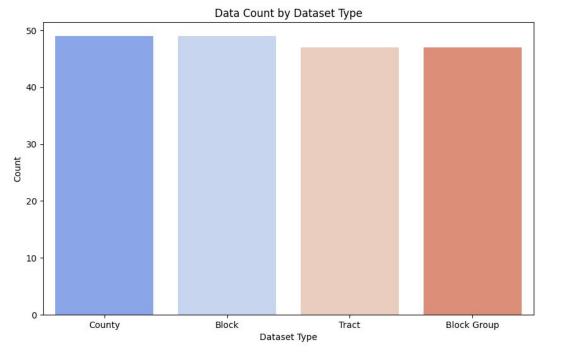


- Counties: All states except Nevada
- Census tracts: All states except Nebraska, Nevada, and Wisconsin
 Census block groups: All states
- except Nebraska, Nevada, Virginia,
- and Wisconsin
 Census blocks: All states except
 Nevada

Data validation:

- Check total number of vertices iscorrect
- Check total population (added across all vertices) is correct



CONNECTING THE DOTS

An Exploration of Dual Graphs in Political Redistricting

Sarah Cannon, Mehrin Khan, Claire Vlases, Xinran (Joy) Zhang (Claremont McKenna College); Andy Emerson, Sara Anderson (Claremont Graduate University)

Key Questions

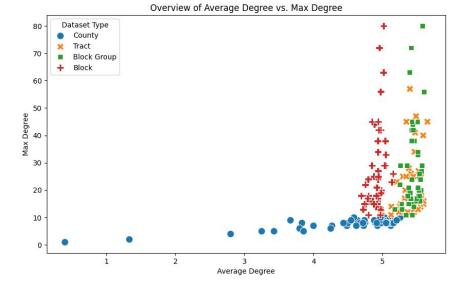
- How similar are dual graphs to grids?
- What properties do dual graphs have that are similar across all levels of geography?
- Are there any key differences between the different levels of geography?
- These graphs are sometimes described as "nearly triangulated and nearly planar." Is this true?

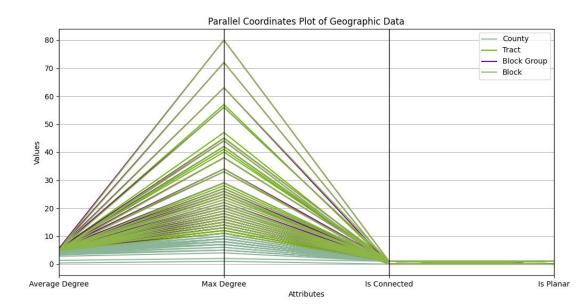
Sequencing

A degree sequence is a list or sequence that represents the degrees of all nodes in a graph.

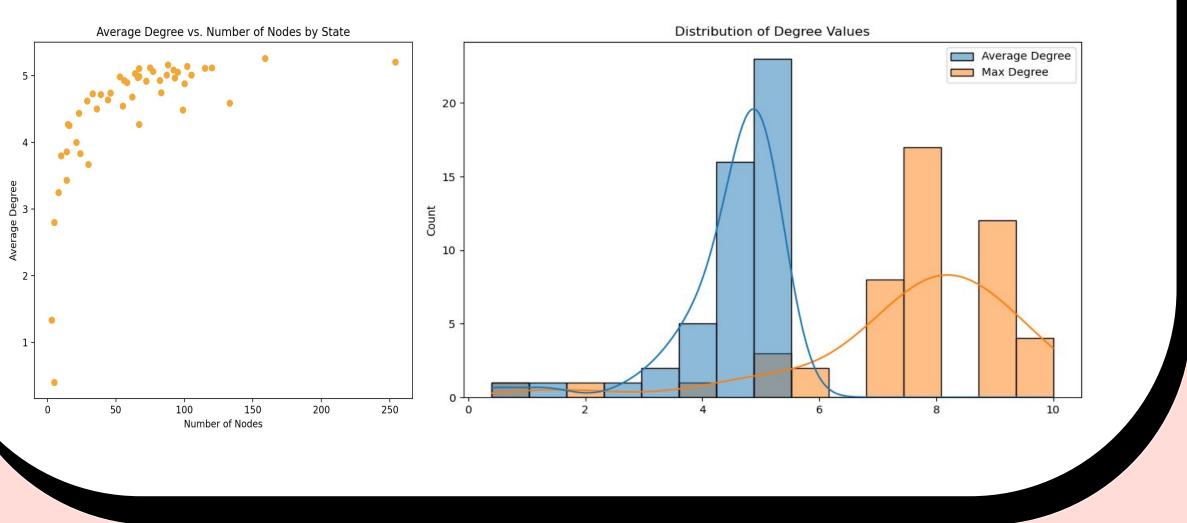
In a degree sequence, each element of the sequence corresponds to the degree of a node in the graph. The sequence is usually sorted in non-increasing order, meaning that the largest degree is listed first, followed by the second largest, and so on, until the smallest degree.

Looking at the entire data set: there are trends apparent in all 4 data sets, including a correlation between average and max degree.





Zooming in on county data: there are noticeable trends within the specific level too. For example, in county data, there is a correlation between average degree, max degree, and a distribution of degree values.

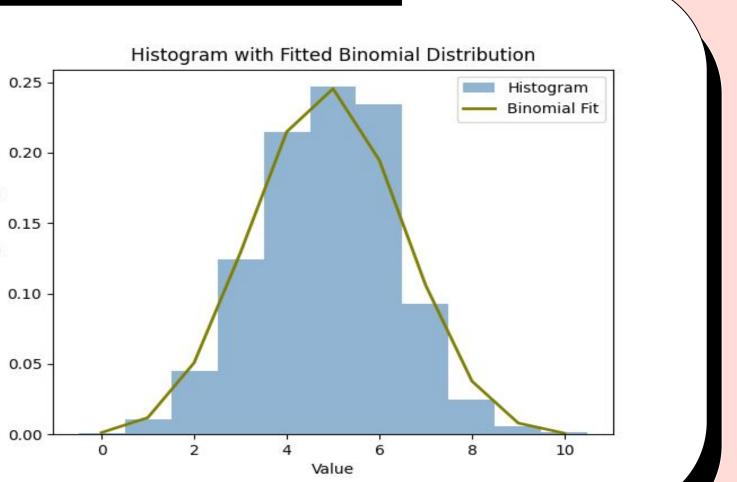


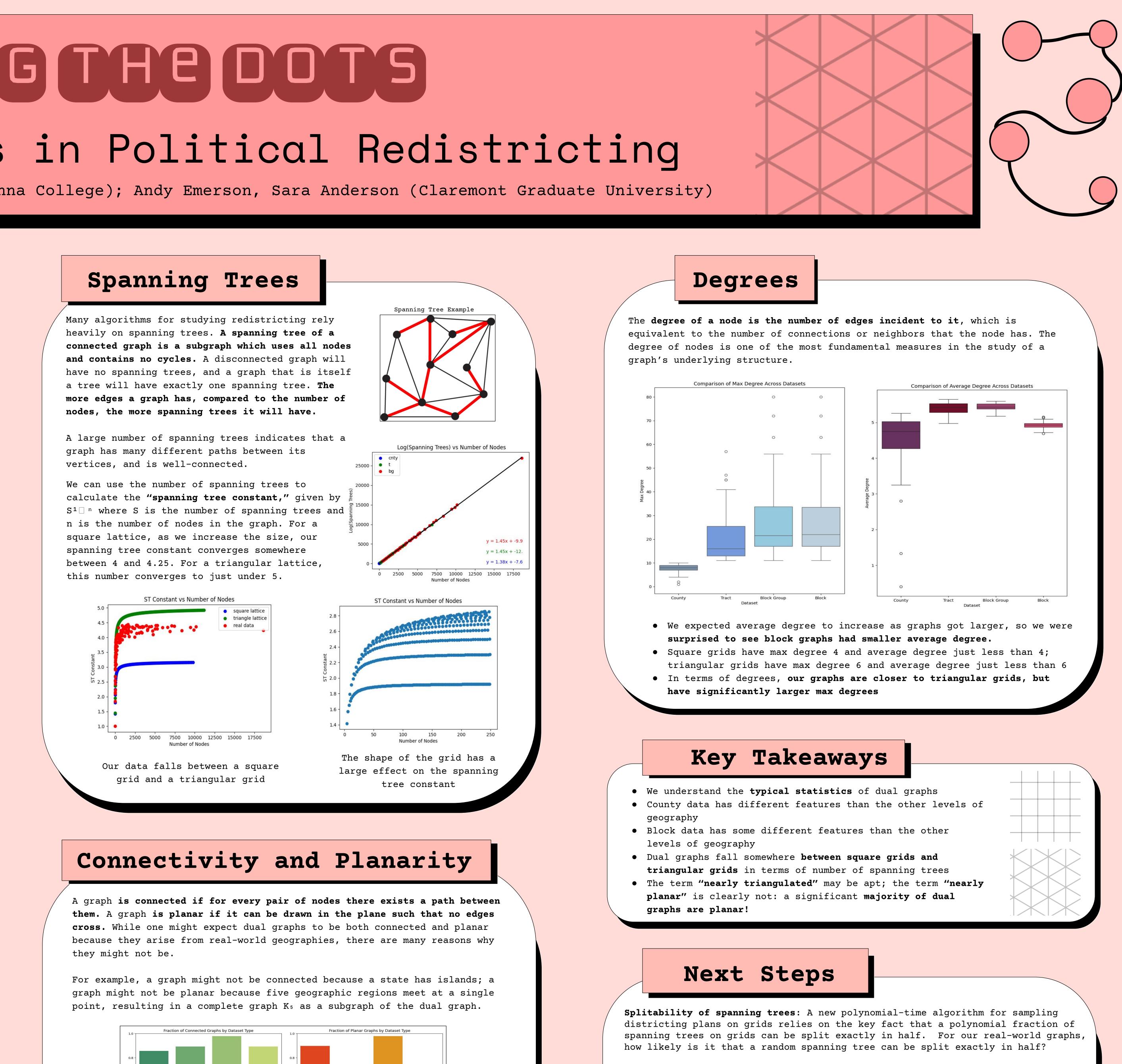
Degree Distributions

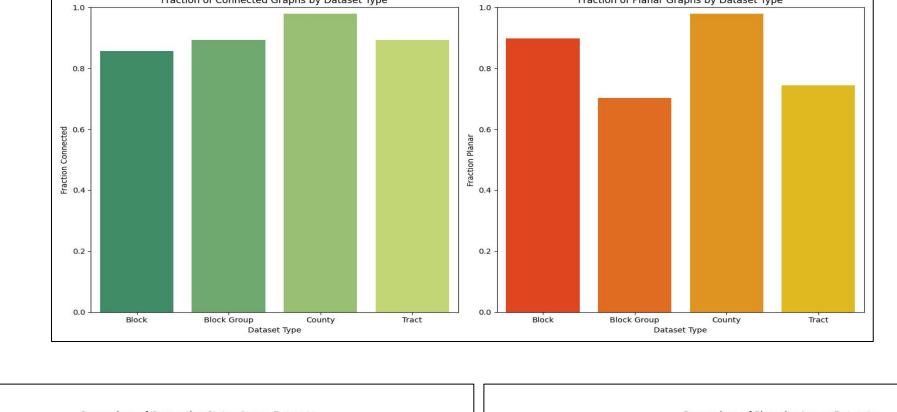
What is the distribution of degrees in a dual graph?

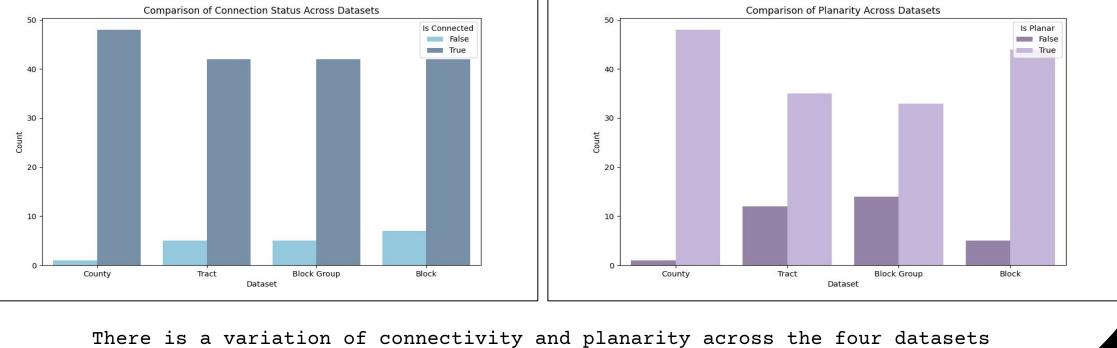
For county data, degrees appear to be **normally distributed**!

Notably, this pattern doesn't hold for other geographies due to the presence of large degree nodes.









Clustering coefficients:

 Local: The local clustering coefficient measures the probability that neighbors of a given node are also connected to each other, forming a triangle. For a node i, the local clustering coefficient C_i is defined as:

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i, and k_i is the degree of node i (the number of neighbors). High local clustering coefficient for a city would indicate that its neighboring cities are also well connected among themselves, forming a tightly knit regional network. This could be important for logistics planning, for example.

• Global: This could be indicative of strong regional cohesion or the presence of natural barriers that limit inter-regional connections.

Centrality measures are used to identify the most important vertices within a graph with respect to different utilities. These measures provide a way to quantify the significance of individual nodes based on their position in the network. We want to continue by exploring the four most common types of centrality: degree centrality, betweenness centrality,

closeness centrality, and eigenvector centrality.