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Fair: 
Results proportionate to the electorate
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Not Fair: 
Results not proportionate to the electorate

● Gerrymandering is when political districts are drawn in an 
unfair way

● Many mathematical tools exist for studying gerrymandering
● Nearly all use dual graphs in their analysis
● Little is known about the structure of dual graphs
● Learning more about dual graphs can help improve methods for 

studying redistricting and guide the development of new future 
methods

Dual Graphs Considered:
● From Redistricting Data Hub, prepared by Daryl DeFord (Washington State), 

which uses Census data
● Our data covers four levels of census geographies: counties, census 

tracts, census block groups, and census blocks. For each, we have data 
available from all states for which there were not data formatting 
issues:
○ Counties: All states except Nevada
○ Census tracts: All states except Nebraska, Nevada, and Wisconsin
○ Census block groups: All states 

except Nebraska, Nevada, Virginia, 
and Wisconsin

○ Census blocks: All states except
Nevada

Data validation:
● Check total number of vertices is 
● correct
● Check total population (added across 

all vertices) is correct

For more detailed redistricting plans, use finer levels of geography

Counties    Census Tracts    Census Block Groups    Census Blocks

Bigger regions Smaller regions

● How similar are dual graphs to grids? 
● What properties do dual graphs have that are 

similar across all levels of geography?
● Are there any key differences between the different 

levels of geography? 
● These graphs are sometimes described as “nearly 

triangulated and nearly planar.” Is this true? 

Connectivity and Planarity
A graph is connected if for every pair of nodes there exists a path between 
them. A graph is planar if it can be drawn in the plane such that no edges 
cross. While one might expect dual graphs to be both connected and planar 
because they arise from real-world geographies, there are many reasons why 
they might not be.

For example, a graph might not be connected because a state has islands; a 
graph might not be planar because five geographic regions meet at a single 
point, resulting in a complete graph K₅ as a subgraph of the dual graph.

Next Steps

● A way to represent geographic structure
● In Iowa: Make a vertex for each county, connect neighboring 

counties  
● Can build redistricting plans out of this graph

Ethical Considerations

A degree sequence is a list or sequence that represents the degrees of 
all nodes in a graph.

In a degree sequence, each element of the sequence corresponds to the 
degree of a node in the graph. The sequence is usually sorted in 
non-increasing order, meaning that the largest degree is listed first, 
followed by the second largest, and so on, until the smallest degree.

Many algorithms for studying redistricting rely 
heavily on spanning trees. A spanning tree of a 
connected graph is a subgraph which uses all nodes 
and contains no cycles. A disconnected graph will 
have no spanning trees, and a graph that is itself 
a tree will have exactly one spanning tree. The 
more edges a graph has, compared to the number of 
nodes, the more spanning trees it will have.

A large number of spanning trees indicates that a 
graph has many different paths between its 
vertices, and is well-connected. 

Splitability of spanning trees: A new polynomial-time algorithm for sampling 
districting plans on grids relies on the key fact that a polynomial fraction of 
spanning trees on grids can be split exactly in half.  For our real-world graphs, 
how likely is it that a random spanning tree can be split exactly in half?

Clustering coefficients:
● Local: The local clustering coefficient measures the probability that 

neighbors of a given node are also connected to each other, forming a 
triangle. For a node i, the local clustering coefficient Cᵢ is defined as:

   where eᵢ is the number of edges between the neighbors of node i, and kᵢ is
   the degree of node i (the number of neighbors). High local clustering
   coefficient for a city would indicate that its neighboring cities are
   also well connected among themselves, forming a tightly knit regional
   network. This could be important for logistics planning, for example.
● Global: This could be indicative of strong regional cohesion or the presence 

of natural barriers that limit inter-regional connections.

Centrality measures are used to identify the most important vertices within a 
graph with respect to different utilities.
These measures provide a way to quantify the significance of individual nodes 
based on their position in the network. We want to continue by exploring the four 
most common types of centrality: degree centrality, betweenness centrality, 
closeness centrality, and eigenvector centrality.

Sequencing

Degrees
The degree of a node is the number of edges incident to it, which is 
equivalent to the number of connections or neighbors that the node has. The 
degree of nodes is one of the most fundamental measures in the study of a 
graph’s underlying structure.

Zooming in on county data: there are noticeable trends within the 
specific level too. For example, in county data, there is a correlation 
between average degree, max degree, and a distribution of degree values. 

What is the distribution of 
degrees in a dual graph? 

For county data, degrees 
appear to be normally 
distributed!

Notably, this pattern doesn’t 
hold for other geographies 
due to the presence of large 
degree nodes.

We can use the number of spanning trees to 
calculate the “spanning tree constant,” given by 
S¹៸ ⁿ where S is the number of spanning trees and 
n is the number of nodes in the graph. For a 
square lattice, as we increase the size, our 
spanning tree constant converges somewhere 
between 4 and 4.25. For a triangular lattice, 
this number converges to just under 5.

● We expected average degree to increase as graphs got larger, so we were 
surprised to see block graphs had smaller average degree.

● Square grids have max degree 4 and average degree just less than 4; 
triangular grids have max degree 6 and average degree just less than 6

● In terms of degrees, our graphs are closer to triangular grids, but 
have significantly larger max degrees

Our data falls between a square 
grid and a triangular grid

The shape of the grid has a 
large effect on the spanning 

tree constant

Key Takeaways
● We understand the typical statistics of dual graphs
● County data has different features than the other levels of 

geography
● Block data has some different features than the other 

levels of geography 
● Dual graphs fall somewhere between square grids and 

triangular grids in terms of number of spanning trees
● The term “nearly triangulated” may be apt; the term “nearly 

planar” is clearly not: a significant majority of dual 
graphs are planar! 

Looking at the entire data set: there are trends apparent in all 4 data 
sets, including a correlation between average and max degree. 

Spanning Tree Example 

There is a variation of connectivity and planarity across the four datasets


